On the Maximal Function for the Generalized Ornstein-uhlenbeck Semigroup.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximal Function for the Generalized Ornstein-uhlenbeck Semigroup

In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials {Hμ n} and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μe−|x| 2 dx, for μ > −1/2 as well as bounded on L(dλμ) for p > 1.

متن کامل

Estimates for the Maximal Operator of the Ornstein-uhlenbeck Semigroup

We show pointwise estimates for the maximal operator of the Ornstein-Uhlenbeck semigroup for functions that are integrable with respect to the Gaussian measure. The estimates are used to prove pointwise convergence. The Ornstein-Uhlenbeck semigroup is defined by Ttf(x)= [ k(t,x,y)f(y)dy, Jr" where ,1. \ -"/2m -2f,-«/2 / \e~'x-y\ \ 4 ^ _ ^ D« k(t, x, y) n (1 -e ) exp -■-Z^L, t > 0, x £ R . This ...

متن کامل

L-smoothing for the Ornstein-Uhlenbeck semigroup

Given a probability density, we estimate the rate of decay of the measure of the level sets of its evolutes by the Ornstein-Uhlenbeck semigroup. It is faster than what follows from the preservation of mass and Markov’s inequality.

متن کامل

The generalized Ornstein–Uhlenbeck process

Langevin-like equations have been studied in the presence of arbitrary noise. The characteristic functional of the generalized Langevin process has been built up. Exact results for all cumulants are given. Particular stress has been put on the Campbell, dichotomous and radioactive decay noises. Transient relaxation, susceptibility and diffusion constants for different (noisy) media have been sk...

متن کامل

Gaussian measures, Hermite polynomials, and the Ornstein-Uhlenbeck semigroup

Theorem 1 (Kolmogorov’s inequality). Suppose that (Ω,S , P ) is a probability space, that X1, . . . , Xn ∈ L(P ), that E(X1) = 0, . . . , E(Xn) = 0, and that 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, third ed., p. 138, Lemma 4.20. 2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 322, Theorem 10.11.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quaestiones Mathematicae

سال: 2007

ISSN: 1607-3606,1727-933X

DOI: 10.2989/16073600709486214